Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667273

RESUMO

Vascular smooth muscle cells (VSMCs), in their contractile and differentiated state, are fundamental for maintaining vascular function. Upon exposure to cholesterol (CHO), VSMCs undergo dedifferentiation, adopting characteristics of foam cells-lipid-laden, macrophage-like cells pivotal in atherosclerotic plaque formation. CHO uptake by VSMCs leads to two primary pathways: ABCA1-mediated efflux or storage in lipid droplets as cholesterol esters (CEs). CE formation, involving the condensation of free CHO and fatty acids, is catalyzed by sterol O-acyltransferase 1 (SOAT1). The necessary fatty acids are synthesized by the lipogenic enzyme fatty acid synthase (FASN), which we found to be upregulated in atherosclerotic human coronary arteries. This observation led us to hypothesize that FASN-mediated fatty acid biosynthesis is crucial in the transformation of VSMCs into foam cells. Our study reveals that CHO treatment upregulates FASN in human aortic SMCs, concurrent with increased expression of CD68 and upregulation of KLF4, markers associated with the foam cell transition. Crucially, downregulation of FASN inhibits the CHO-induced upregulation of CD68 and KLF4 in VSMCs. Additionally, FASN-deficient VSMCs exhibit hindered lipid accumulation and an impaired transition to the foam cell phenotype following CHO exposure, while the addition of the fatty acid palmitate, the main FASN product, exacerbates this transition. FASN-deficient cells also show decreased SOAT1 expression and elevated ABCA1. Notably, similar effects are observed in KLF4-deficient cells. Our findings demonstrate that FASN plays an essential role in the CHO-induced upregulation of KLF4 and the VSMC to foam cell transition and suggest that targeting FASN could be a novel therapeutic strategy to regulate VSMC phenotypic modulation.


Assuntos
Células Espumosas , Fator 4 Semelhante a Kruppel , Músculo Liso Vascular , Animais , Humanos , Aterosclerose/patologia , Aterosclerose/metabolismo , Colesterol/metabolismo , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/genética , Ácidos Graxos/metabolismo , Células Espumosas/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo
2.
Front Cell Dev Biol ; 11: 1231489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635877

RESUMO

Cell migration is essential for many biological and pathological processes. Establishing cell polarity with a trailing edge and forming a single lamellipodium at the leading edge of the cell is crucial for efficient directional cell migration and is a hallmark of mesenchymal cell motility. Lamellipodia formation is regulated by spatial-temporal activation of the small GTPases Rac and Cdc42 at the front edge, and RhoA at the rear end. At a molecular level, partitioning-defective (Par) protein complex comprising Par3, Par6, and atypical Protein Kinase (aPKC isoforms ζ and λ/ι) regulates front-rear axis polarization. At the front edge, integrin clustering activates Cdc42, prompting the formation of Par3/Par6/aPKC complexes to modulate MTOC positioning and microtubule stabilization. Consequently, the Par3/Par6/aPKC complex recruits Rac1-GEF Tiam to activate Rac1, leading to lamellipodium formation. At the rear end, RhoA-ROCK phosphorylates Par3 disrupting its interaction with Tiam and inactivating Rac1. RhoA activity at the rear end allows the formation of focal adhesions and stress fibers necessary to generate the traction forces that allow cell movement. Nox1-based NADPH oxidase is necessary for PDGF-induced migration in vitro and in vivo for many cell types, including fibroblasts and smooth muscle cells. Here, we report that Nox1-deficient cells failed to acquire a normal front-to-rear polarity, polarize MTOC, and form a single lamellipodium. Instead, these cells form multiple protrusions that accumulate Par3 and active Tiam. The exogenous addition of H2O2 rescues this phenotype and is associated with the hyperactivation of Par3, Tiam, and Rac1. Mechanistically, Nox1 deficiency induces the inactivation of PP2A phosphatase, leading to increased activation of aPKC. These results were validated in Nox1y/- primary mouse aortic smooth muscle cells (MASMCs), which also showed PP2A inactivation after PDGF-BB stimulation consistent with exacerbated activation of aPKC. Moreover, we evaluated the physiological relevance of this signaling pathway using a femoral artery wire injury model to generate neointimal hyperplasia. Nox1y/- mice showed increased staining for the inactive form of PP2A and increased signal for active aPKC, suggesting that PP2A and aPKC activities might contribute to reducing neointima formation observed in the arteries of Nox1y/- mice.

3.
Free Radic Biol Med ; 195: 283-297, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596387

RESUMO

The polymerase delta interacting protein 2 (Poldip2) is a nuclear-encoded mitochondrial protein required for oxidative metabolism. Under hypoxia, Poldip2 expression is repressed by an unknown mechanism. Therefore, low levels of Poldip2 are required to maintain glycolytic metabolism. The Cellular Communication Network Factor 2 (CCN2, Connective tissue growth factor, CTGF) is a profibrogenic molecule highly expressed in cancer and vascular inflammation in advanced atherosclerosis. Because CCN2 is upregulated under hypoxia and is associated with glycolytic metabolism, we hypothesize that Poldip2 downregulation is responsible for the upregulation of profibrotic signaling under hypoxia. Here, we report that Poldip2 is repressed under hypoxia by a mechanism that requires the activation of the enhancer of zeste homolog 2 repressive complex (EZH2) downstream from the Cyclin-Dependent Kinase 2 (CDK2). Importantly, we found that Poldip2 repression is required for CCN2 expression downstream of metabolic inhibition of the ubiquitin-proteasome system (UPS)-dependent stabilization of the serum response factor. Pharmacological or gene expression inhibition of CDK2 under hypoxia reverses Poldip2 downregulation, the inhibition of the UPS, and the expression of CCN2, collagen, and fibronectin. Thus, our findings connect cell cycle regulation and proteasome activity to mitochondrial function and fibrotic responses under hypoxia.


Assuntos
Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Nucleares/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Hipóxia/genética , Hipóxia/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo
4.
Cardiovasc Res ; 118(11): 2506-2518, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34528082

RESUMO

AIMS: Sepsis-induced lung injury is associated with significant morbidity and mortality. Previously, we showed that heterozygous deletion of polymerase δ-interacting protein 2 (Poldip2) was protective against sepsis-induced lung injury. Since endothelial barrier disruption is thought to be the main mechanism of sepsis-induced lung injury, we sought to determine if the observed protection was specifically due to the effect of reduced endothelial Poldip2. METHODS AND RESULTS: Endothelial-specific Poldip2 knock-out mice (EC-/-) and their wild-type littermates (EC+/+) were injected with saline or lipopolysaccharide (18 mg/kg) to model sepsis-induced lung injury. At 18 h post-injection mice, were euthanized and bronchoalveolar lavage (BAL) fluid and lung tissue were collected to assess leucocyte infiltration. Poldip2 EC-/- mice showed reduced lung leucocyte infiltration in BAL (0.21 ± 0.9×106 vs. 1.29 ± 1.8×106 cells/mL) and lung tissue (12.7 ± 1.8 vs. 23 ± 3.7% neutrophils of total number of cells) compared to Poldip2 EC+/+ mice. qPCR analysis of the lung tissue revealed a significantly dampened induction of inflammatory gene expression (TNFα 2.23 ± 0.39 vs. 4.15 ± 0.5-fold, IκBα 4.32 ± 1.53 vs. 8.97 ± 1.59-fold), neutrophil chemoattractant gene expression (CXCL1 68.8 ± 29.6 vs. 147 ± 25.7-fold, CXCL2 65 ± 25.6 vs. 215 ± 27.3-fold) and a marker of endothelial activation (VCAM1 1.25 ± 0.25 vs. 3.8 ± 0.38-fold) in Poldip2 EC-/- compared to Poldip2 EC+/+ lungs. An in vitro model using human pulmonary microvascular endothelial cells was used to assess the effect of Poldip2 knock-down on endothelial activation and permeability. TNFα-induced endothelial permeability and VE-cadherin disruption were significantly reduced with siRNA-mediated knock-down of Poldip2 (5 ± 0.5 vs. 17.5 ± 3-fold for permeability, 1.5 ± 0.4 vs. 10.9 ± 1.3-fold for proportion of disrupted VE-cadherin). Poldip2 knock-down altered expression of Rho-GTPase-related genes, which correlated with reduced RhoA activation by TNFα (0.94 ± 0.05 vs. 1.29 ± 0.01 of relative RhoA activity) accompanied by redistribution of active-RhoA staining to the centre of the cell. CONCLUSION: Poldip2 is a potent regulator of endothelial dysfunction during sepsis-induced lung injury, and its endothelium-specific inhibition may provide clinical benefit.


Assuntos
Lesão Pulmonar , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Sepse , Animais , Endotélio/metabolismo , Humanos , Pulmão/metabolismo , Lesão Pulmonar/genética , Camundongos , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Cancer Lett ; 502: 133-142, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444690

RESUMO

The ability of tumor cells to adapt to changes in oxygen tension is essential for tumor development. Low oxygen concentration influences cellular metabolism and, thus, affects proliferation, migration, and invasion. A focal point of the cell's adaptation to hypoxia is the transcription factor HIF1α (hypoxia-inducible factor 1 alpha), which affects the expression of specific gene networks involved in cellular energetics and metabolism. This review illustrates the mechanisms by which HIF1α-induced metabolic adaptation promotes angiogenesis, participates in the escape from immune recognition, and increases cancer cell antioxidant capacity. In addition to hypoxia, metabolic inhibition of 2-oxoglutarate-dependent dioxygenases regulates HIF1α stability and transcriptional activity. This phenomenon, known as pseudohypoxia, is frequently used by cancer cells to promote glycolytic metabolism to support biomass synthesis for cell growth and proliferation. In this review, we highlight the role of the most important metabolic intermediaries that are at the center of cancer's biology, and in particular, the participation of these metabolites in HIF1α retrograde signaling during the establishment of pseudohypoxia. Finally, we will discuss how these changes affect both the development of cancers and their resistance to treatment.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , Estabilidade Proteica , Transdução de Sinais , Hipóxia Tumoral
6.
Circ Res ; 126(1): 41-56, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31656131

RESUMO

RATIONALE: The mitochondrial Poldip2 (protein polymerase interacting protein 2) is required for the activity of the tricarboxylic acid cycle. As a consequence, Poldip2 deficiency induces metabolic reprograming with repressed mitochondrial respiration and increased glycolytic activity. Though homozygous deletion of Poldip2 is lethal, heterozygous mice are viable and show protection against aneurysm and injury-induced neointimal hyperplasia, diseases linked to loss of vascular smooth muscle differentiation. Thus, we hypothesize that the metabolic reprograming induced by Poldip2 deficiency controls VSMC differentiation. OBJECTIVE: To determine the role of Poldip2-mediated metabolic reprograming in phenotypic modulation of VSMC. METHODS AND RESULTS: We show that Poldip2 deficiency in vascular smooth muscle in vitro and in vivo induces the expression of the SRF (serum response factor), myocardin, and MRTFA (myocardin-related transcription factor A) and dramatically represses KLF4 (Krüppel-like factor 4). Consequently, Poldip2-deficient VSMC and mouse aorta express high levels of contractile proteins and, more significantly, these cells do not dedifferentiate nor acquire macrophage-like characteristics when exposed to cholesterol or PDGF (platelet-derived growth factor). Regarding the mechanism, we found that Poldip2 deficiency upregulates the hexosamine biosynthetic pathway and OGT (O-linked N-acetylglucosamine transferase)-mediated protein O-GlcNAcylation. Increased protein glycosylation causes the inhibition of a nuclear ubiquitin proteasome system responsible for SRF stabilization and KLF4 repression and is required for the establishment of the differentiated phenotype in Poldip2-deficient cells. CONCLUSIONS: Our data show that Poldip2 deficiency induces a highly differentiated phenotype in VSMCs through a mechanism that involves regulation of metabolism and proteostasis. Additionally, our study positions mitochondria-initiated signaling as key element of the VSMC differentiation programs that can be targeted to modulate VSMC phenotype during vascular diseases.


Assuntos
Proteínas Mitocondriais/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Hiperplasia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Miócitos de Músculo Liso/citologia , Neointima , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Resposta Sérica/biossíntese , Fator de Resposta Sérica/genética , Transativadores/biossíntese , Transativadores/genética , Ubiquitina/metabolismo
7.
Mucosal Immunol ; 12(3): 668-678, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745566

RESUMO

Junctional adhesion molecule-A (JAM-A) is a transmembrane glycoprotein expressed on leukocytes, endothelia, and epithelia that regulates biological processes including barrier function and immune responses. While JAM-A has been reported to facilitate tissue infiltration of leukocytes under inflammatory conditions, the contributions of leukocyte-expressed JAM-A in vivo remain unresolved. We investigated the role of leukocyte-expressed JAM-A in acute peritonitis induced by zymosan, lipopolysaccharide (LPS), or TNFα using mice with selective loss of JAM-A in myelomonocytic cells (LysM-Cre;Jam-afl/fl). Surprisingly, in LysM-Cre;Jam-afl/fl mice, loss of JAM-A did not affect neutrophil (PMN) recruitment into the peritoneum in response to zymosan, LPS, or TNFα although it was significantly reduced in Jam-aKO mice. In parallel, Jam-aKO peritoneal macrophages exhibited diminished CXCL1 chemokine production and decreased activation of NF-kB, whereas those from LysM-Cre;Jam-afl/fl mice were unaffected. Using Villin-Cre;Jam-afl/fl mice, targeted loss of JAM-A on intestinal epithelial cells resulted in increased intestinal permeability along with reduced peritoneal PMN migration as well as lower levels of CXCL1 and active NF-kB similar to that observed in Jam-aKO animals. Interestingly, in germ-free Villin-Cre;Jam-afl/fl mice, PMN recruitment was unaffected suggesting dependence on gut microbiota. Such observations highlight the functional link between a leaky gut and regulation of innate immune responses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritonite/imunologia , Receptores de Superfície Celular/metabolismo , Junções Íntimas/patologia , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Infiltração de Neutrófilos , Peritonite/induzido quimicamente , Permeabilidade , Receptores de Superfície Celular/genética , Zimosan
8.
Lab Invest ; 99(3): 399-410, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30291325

RESUMO

The dual specificity phosphatase slingshot homolog 1 (SSH1) contributes to actin remodeling by dephosphorylating and activating the actin-severing protein cofilin. The reorganization of the actin cytoskeleton has been implicated in chronic hypertension and the subsequent mechano-adaptive rearrangement of vessel wall components. Therefore, using a novel Ssh1-/- mouse model, we investigated the potential role of SSH1 in angiotensin II (Ang II)-induced hypertension, and vascular remodeling. We found that loss of SSH1 did not produce overt phenotypic changes and that baseline blood pressures as well as heart rates were comparable between Ssh1+/+ and Ssh1-/- mice. Although 14 days of Ang II treatment equally increased systolic blood pressure in both genotypes, histological assessment of aortic samples indicated that medial thickening was exacerbated by the loss of SSH1. Consequently, reverse-transcription quantitative PCR analysis of the transcripts from Ang II-infused animals confirmed increased aortic expression levels of fibronectin, and osteopontin in Ssh1-/- when compared to wild-type mice. Mechanistically, our data suggest that fibrosis in SSH1-deficient mice occurs by a process that involves aberrant responses to Ang II-induced TGFß1. Taken together, our work indicates that Ang II-dependent fibrotic gene expression and vascular remodeling, but not the Ang II-induced pressor response, are modulated by SSH1-mediated signaling pathways and SSH1 activity is protective against Ang II-induced remodeling in the vasculature.


Assuntos
Angiotensina II/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Remodelação Vascular/fisiologia , Animais , Aorta/metabolismo , Aorta/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia , Hipertrofia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Vascular/genética
9.
Proc Natl Acad Sci U S A ; 115(8): 1789-1794, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434038

RESUMO

Although the addition of the prosthetic group lipoate is essential to the activity of critical mitochondrial catabolic enzymes, its regulation is unknown. Here, we show that lipoylation of the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase (αKDH) complexes is a dynamically regulated process that is inhibited under hypoxia and in cancer cells to restrain mitochondrial respiration. Mechanistically, we found that the polymerase-δ interacting protein 2 (Poldip2), a nuclear-encoded mitochondrial protein of unknown function, controls the lipoylation of the pyruvate and α-KDH dihydrolipoamide acetyltransferase subunits by a mechanism that involves regulation of the caseinolytic peptidase (Clp)-protease complex and degradation of the lipoate-activating enzyme Ac-CoA synthetase medium-chain family member 1 (ACSM1). ACSM1 is required for the utilization of lipoic acid derived from a salvage pathway, an unacknowledged lipoylation mechanism. In Poldip2-deficient cells, reduced lipoylation represses mitochondrial function and induces the stabilization of hypoxia-inducible factor 1α (HIF-1α) by loss of substrate inhibition of prolyl-4-hydroxylases (PHDs). HIF-1α-mediated retrograde signaling results in a metabolic reprogramming that resembles hypoxic and cancer cell adaptation. Indeed, we observe that Poldip2 expression is down-regulated by hypoxia in a variety of cell types and basally repressed in triple-negative cancer cells, leading to inhibition of lipoylation of the pyruvate and α-KDH complexes and mitochondrial dysfunction. Increasing mitochondrial lipoylation by forced expression of Poldip2 increases respiration and reduces the growth rate of cancer cells. Our work unveils a regulatory mechanism of catabolic enzymes required for metabolic plasticity and highlights the role of Poldip2 as key during hypoxia and cancer cell metabolic adaptation.


Assuntos
Hipóxia/enzimologia , Neoplasias/enzimologia , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Animais , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ácido Tióctico/metabolismo
10.
PLoS One ; 8(11): e79657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236150

RESUMO

In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor ß (TGFß) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFß and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFß completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFß. TGFß had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFß on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFß. siRNA against Smad4 completely reversed the inhibitory effect of TGFß on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFß-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFß via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.


Assuntos
Ciclina D1/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Adolescente , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Proteólise , Transdução de Sinais/efeitos dos fármacos , Proteína Smad4/metabolismo , Transcrição Gênica
11.
Circ Res ; 111(1): 56-65, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22619279

RESUMO

RATIONALE: The type I subclass of coronins, a family of actin-binding proteins, regulates various actin-dependent cellular processes, including migration. However, the existence and role of coronins in vascular smooth muscle cell (VSMC) migration has yet to be determined. OBJECTIVE: The goal of the present study was to define the mechanism by which coronins regulate platelet-derived growth factor (PDGF)-induced VSMC migration. METHODS AND RESULTS: Coronin 1B (Coro1B) and 1C (Coro1C) were both found to be expressed in VSMCs at the mRNA and protein levels. Downregulation of Coro1B by siRNA increases PDGF-induced migration, while downregulation of Coro1C has no effect. We confirmed through kymograph analysis that the Coro1B-downregulation-mediated increase in migration is directly linked to increased lamellipodial protraction rate and protrusion distance in VSMC. In other cell types, coronins exert their effects on lamellipodia dynamics by an inhibitory interaction with the ARP2/3 complex, which is disrupted by the phosphorylation of Coro1B. We found that PDGF induces phosphorylation of Coro1B on serine-2 via PKCε, leading to a decrease in the interaction of Coro1B with the ARP2/3 complex. VSMCs transfected with a phosphodeficient S2A Coro1B mutant showed decreased migration in response to PDGF, suggesting that the phosphorylation of Coro1B is required for the promotion of migration by PDGF. In both the rat and mouse, Coro1B phosphorylation was increased in response to vessel injury in vivo. CONCLUSIONS: Our data suggest that phosphorylation of Coro1B and the subsequent reduced interaction with ARP2/3 complex participate in PDGF-induced VSMC migration, an important step in vascular lesion formation.


Assuntos
Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Becaplermina , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Quimografia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/patologia , Neointima , Fosforilação , Proteína Quinase C-épsilon/metabolismo , Pseudópodes/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção
12.
Circ Res ; 102(4): 432-8, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18096821

RESUMO

Platelet-derived growth factor (PDGF) plays a central role in vascular healing, atherosclerosis, and restenosis, partly by stimulating vascular smooth muscle cell (VSMC) migration. Migration requires rapid turnover of actin filaments, which is partially controlled by cofilin. Although cofilin is negatively regulated by Ser3 phosphorylation, the upstream signaling pathways have not been defined, nor has its role in VSMC migration been studied. We hypothesized that PDGF-induced migration of VSMCs involves cofilin activation and that this is regulated by the serine kinase LIM kinase (LIMK) and the novel phosphatase Slingshot (SSH)1L. In human VSMCs, stimulation with PDGF increased G-actin incorporation into the actin cytoskeleton. PDGF transiently activated the cofilin kinase, LIMK, with a peak at 5 minutes. However, cofilin was dephosphorylated between 5 and 45 minutes, with a maximum of 43+/-5% dephosphorylation at 30 minutes, suggesting that PDGF also activates a cofilin phosphatase. We found that VSMCs express SSH1L, which is induced and activated (564+/-73 versus 1021+/-141 picomoles of PO(4); P=0.015) by PDGF. Of importance, small interfering RNA directed against SSH1L blocked cofilin dephosphorylation and decreased migration (528+/-33 versus 318+/-25 cells/field; P<0.01). Taken together, our results suggest that PDGF participates in actin dynamics by dual regulation of cofilin activity via LIMK and SSH1L.


Assuntos
Movimento Celular/fisiologia , Cofilina 1/metabolismo , Quinases Lim/metabolismo , Músculo Liso Vascular/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Citoesqueleto de Actina/metabolismo , Aorta/citologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/fisiologia , Humanos , Músculo Liso Vascular/citologia , Fosforilação/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo
13.
J Cardiovasc Pharmacol ; 50(1): 9-16, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17666910

RESUMO

NADPH oxidases have recently been shown to contribute to the pathogenesis of hypertension. The development of specific inhibitors of these enzymes has focused attention on their potential therapeutic use in hypertensive disease. Two of the most specific inhibitors, gp91ds-tat and apocynin, have been shown to decrease blood pressure in animal models of hypertension. Other inhibitors, including diphenylene iodonium, aminoethyl benzenesulfono fluoride, S17834, PR39, protein kinase C inhibitors, and VAS2870, have shown promise in vitro, but their in vivo specificity, pharmacokinetics, and effectiveness in hypertension remains to be determined. Of importance, the currently available antihypertensive agents angiotensin-converting enzyme inhibitors and angiotensin receptor blockers also effectively inhibit NADPH oxidase activation. Similarly, the cholesterol-lowering agents, statins, have been shown to attenuate NADPH oxidase activation. Although, antioxidants act to scavenge the reactive oxygen species produced by these enzymes, their effectiveness is limited. Targeting NADPH homologues may have a distinct advantage over current therapies because it would specifically prevent the pathophysiological formation of reactive oxygen species that contributes to hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , NADPH Oxidases/antagonistas & inibidores , Animais , Anti-Hipertensivos/administração & dosagem , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Humanos , Hipertensão/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA